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Software bottlenecks can diminish the maximum
performance of a computer system.

* Capacities of software resources can prevent full utilization
of hardware resources.

* Examples:
* Insufficient number of pooled threads
* Contended mutual exclusion locks
* Blocking communication channels

* Also called layered bottlenecks, since a service request can
hold software resources simultaneously from multiple layers
of services.



Example — Acme Air Go web application
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Where are the software bottlenecks?
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Layered queueing network can analyze software
bottlenecks, if a performance model is given.

* Models software bottlenecks as layers of queueing networks.

* A request can use a hardware resource or a service from an
underlying layer.

* Outputs:
* Throughput
 Utilization
* Response time
* Queue length

* But a performance problem often occurs when we do not
know the performance model!



Our approach: estimating a layered
performance model from execution profiles

* We build a thread dependency graph from given execution
profiles to capture synchronization dependency among
threads and mean thread counts.

* Top down graph traversal along the largest thread counts
allows us to detect layered bottlenecks.

* We can build the graph with a small runtime overhead by
extending existing profiling libraries in the Go language.



A thread dependency graph shows thread
counts and synchronization dependency.
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We build the graph from thread profiles and
novel wake-up profiles.

Thread profiles are sampled by timer to
reflect mean thread counts.
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Wake-up profiles are sampled at synchronization
events to detect dependency among threads.
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The profiles are merged as a calling context tree,
which is reduced into a thread dependency graph.
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Iterative steps of bottleneck detection and

optimization

1. Corrlmorl)ilde the target application by the Go compiler with wake-up profiles
enabled.

2. Run the target workload to periodically collect thread profiles and wake-
up profiles.

3. Annotate to the function which handles the target transaction. )

4. Post-process the Erofiles to generate a calling context tree and a thread
dependency graph.

5. Identify the layered bottlenecks for the target transaction. "

6. Design optimizations to mitigate the bottlenecks. m

7. Apply the optimizations to the application and/or the workload. | steps

8. Repeat from Step 1.



Top down traversal of the largest thread counts

shows layered bottlenecks in Acme Air Go.
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We can improve the scalability of Acme Air
Go by pooling authenticated connections.
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The profiling overhead was as small as 1% of
the busy cycles.
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Another example — Hyperledger Fabric, a
permissioned blockchain network
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Lock contention at an identity cache can be a
bottleneck with Hyperledger Fabric v1.2.
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After the contention is removed, the committer
thread becomes the next bottleneck.
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Related work

* Model-based approaches
* Requires a performance model given.

* A thread dependency graph approximates a resource dependency
graph of the LQN labeled with measured queue lengths.

* Profile-based approaches

* Do not handle dependency among threads.

* Recently Zhou et al. also proposed trace-based bottleneck
detection which focuses on cyclic dependencies among threads.



Conclusions

* We proposed a novel approach for detecting layered
bottlenecks by combining model-based and profile-based
approaches.

* Our approach can be implemented by extending profiling
libraries of the Go language and works with a small runtime
overhead.

* Today’s middleware is a complex LQN and our approach is
useful to analyze its layered bottlenecks on demand.



