
Profile-based Detection of
Layered Bottlenecks

Tatsushi Inagaki, Yohei Ueda, Takuya Nakaike, Moriyoshi Ohara

IBM Research – Tokyo

April 10, 2019 1ICPE 2019 at Mumbai, India

Software bottlenecks can diminish the maximum
performance of a computer system.

• Capacities of software resources can prevent full utilization
of hardware resources.

• Examples:
• Insufficient number of pooled threads

• Contended mutual exclusion locks

• Blocking communication channels

• Also called layered bottlenecks, since a service request can
hold software resources simultaneously from multiple layers
of services.

April 10, 2019 ICPE 2019 at Mumbai, India 2

Example – Acme Air Go web application

April 10, 2019 ICPE 2019 at Mumbai, India 3

0

20

40

60

80

100

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

P
ro

c
e

s
s

o
r

U
ti

li
z
a

ti
o

n
 (

%
)

T
h

ro
u

g
h

p
u

t
(T

x
/s

e
c
)

Target Throughput (Tx/sec)

Throughput Driver Utilization App Utilization DB Utilization

Throughput starts
saturating around
6000 Tx/sec. Processors

are not fully
utilized.

Where are the software bottlenecks?

April 10, 2019 ICPE 2019 at Mumbai, India 4

Driver Host

JMeter

Go Web Server

MongoDB

REST BSON

Web

Frame

work

DB

driver

Business

Logic

Application Host Database

Host

Third parties’
components
Third parties’
components
Third parties’
components

Layered queueing network can analyze software
bottlenecks, if a performance model is given.

• Models software bottlenecks as layers of queueing networks.
• A request can use a hardware resource or a service from an

underlying layer.

• Outputs:
• Throughput
• Utilization
• Response time
• Queue length

• But a performance problem often occurs when we do not
know the performance model!

April 10, 2019 ICPE 2019 at Mumbai, India 5

Our approach: estimating a layered
performance model from execution profiles

• We build a thread dependency graph from given execution
profiles to capture synchronization dependency among
threads and mean thread counts.

• Top down graph traversal along the largest thread counts
allows us to detect layered bottlenecks.

• We can build the graph with a small runtime overhead by
extending existing profiling libraries in the Go language.

April 10, 2019 ICPE 2019 at Mumbai, India 6

A thread dependency graph shows thread
counts and synchronization dependency.

April 10, 2019 7ICPE 2019 at Mumbai, India

func main() {
go sender()
for i := 0; i < 10; i++ {

go receiver()
}
time.Sleep(time.Duration(5) * time.Minute)

}
func sender() {

for true {
time.Sleep(time.Duration(1) * time.Millisecond)
c <- true

}
}
func receiver() {

for true {
_ = <-c
time.Sleep(time.Duration(1) * time.Nanosecond)

}
}

10 receiver
threads are

created.

The receivers
are waiting

for the sender.

1 sender
thread is
created.

The sender
is sleeping.

Thread
creation
Thread

creation

Sending and
receiving a
message

Sending and
receiving a
message

Blocking
library

call

We build the graph from thread profiles and
novel wake-up profiles.

April 10, 2019 ICPE 2019 at Mumbai, India 8

goroutine 19 [sleep]:
time.Sleep(0xf4240)

/opt/go/src/runtime/time.go:65 +0x130
main.sender()

/main.go:15 +0x20
created by main.main

/main.go:6 +0x51
goroutine 20 [chan receive]:
main.receiver()

/main.go:22 +0x20
created by main.main

/main.go:8 +0x72

1175794700 503 @ 0x405bdc 0x405a18 0x405383 0x6e2bc6
Waiter
runtime.gopark+0x12b /opt/go/src/runtime/proc.go:287
runtime.goparkunlock+0x5d /opt/go/src/runtime/proc.go:293
runtime.chanrecv+0x303 /opt/go/src/runtime/chan.go:506
runtime.chanrecv1+0x2a /opt/go/src/runtime/chan.go:388
main.receiver+0x1f /main.go:22
created by
main.main+0x71 /main.go:8
Notifier
runtime.send+0x8b /opt/go/src/runtime/chan.go:280
runtime.chansend+0x687 /opt/go/src/runtime/chan.go:179
runtime.chansend1+0x42 /opt/go/src/runtime/chan.go:113
main.sender+0x1f /main.go:16
created by
main.main+0x50 /main.go:6

Thread profiles are sampled by timer to
reflect mean thread counts.

Wake-up profiles are sampled at synchronization
events to detect dependency among threads.

Status

Call
stack

Creation
site

Waiter
thread

Notifier
thread

The profiles are merged as a calling context tree,
which is reduced into a thread dependency graph.

April 10, 2019 ICPE 2019 at Mumbai, India 9

Call stacks
Captured in a

wake-up profile

Converted to a
dependency link in

a thread
dependency graph

Iterative steps of bottleneck detection and
optimization
1. Compile the target application by the Go compiler with wake-up profiles

enabled.
2. Run the target workload to periodically collect thread profiles and wake-

up profiles.
3. Annotate to the function which handles the target transaction.
4. Post-process the profiles to generate a calling context tree and a thread

dependency graph.
5. Identify the layered bottlenecks for the target transaction.
6. Design optimizations to mitigate the bottlenecks.
7. Apply the optimizations to the application and/or the workload.
8. Repeat from Step 1.

April 10, 2019 ICPE 2019 at Mumbai, India 10

Manual
steps

Top down traversal of the largest thread counts
shows layered bottlenecks in Acme Air Go.

April 10, 2019 11ICPE 2019 at Mumbai, India

1

2

3

5

4

HTTP
request
handler

Allocating
a new DB
connectorA lock in mgo

package at
copying

authentication
information

We can improve the scalability of Acme Air
Go by pooling authenticated connections.

April 10, 2019 ICPE 2019 at Mumbai, India 12

0

2000

4000

6000

8000

10000

12000

0 5000 10000 15000 20000

T
h

ro
u

g
h

p
u

t
(T

x
/s

e
c
)

Target Throughput (Tx/sec)

Baseline Optimized 1

3

5

2

4

6

7

HTTP
request
handler

REST API
handler for

flight queries

MongoDB
socket
reader

I/O wait

The profiling overhead was as small as 1% of
the busy cycles.

April 10, 2019 ICPE 2019 at Mumbai, India 13

0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0%

mallocgc

sweepone

heapBitsForObject

RLock

ipt_do_table

% in Application Server

F
u

n
c
ti

o
n

Overhead Baseline
Accumulated
overhead was 1% of
the total busy cycles.

Another example – Hyperledger Fabric, a
permissioned blockchain network

April 10, 2019 ICPE 2019 at Mumbai, India 14

Driver Host

JMeter Fabric

SDK

JSON

RPC

Peer

Peer Host Ordering Host

Orderer

Orderer

Orderer

Kafka

Kafka

Zoo

keeper1.

Chain

codeLedger

Zoo

keeper

3. Send

5.

2.
6.

7. Commit

4.

1

3

5

2

4

6

7

8
9

Lock contention at an identity cache can be a
bottleneck with Hyperledger Fabric v1.2.

April 10, 2019 ICPE 2019 at Mumbai, India 15

Block
Event

Listener

Committer

Validator

MSP
Identity
Cache

After the contention is removed, the committer
thread becomes the next bottleneck.

April 10, 2019 ICPE 2019 at Mumbai, India 16

1

3

5

2

4

6

7

Block
Event

Listener

Committer Busy Cycles
for LevelDB
Operation

0

200

400

600

800

1000

1200

1400

1600

0 1000 2000 3000 4000

T
h

ro
u

g
h

p
u

t
(T

x
/s

e
c
)

Target Throughput (Tx/sec)

Base Commit Opt Commit

Related work

• Model-based approaches
• Requires a performance model given.

• A thread dependency graph approximates a resource dependency
graph of the LQN labeled with measured queue lengths.

• Profile-based approaches
• Do not handle dependency among threads.

• Recently Zhou et al. also proposed trace-based bottleneck
detection which focuses on cyclic dependencies among threads.

April 10, 2019 ICPE 2019 at Mumbai, India 17

Conclusions

• We proposed a novel approach for detecting layered
bottlenecks by combining model-based and profile-based
approaches.

• Our approach can be implemented by extending profiling
libraries of the Go language and works with a small runtime
overhead.

• Today’s middleware is a complex LQN and our approach is
useful to analyze its layered bottlenecks on demand.

April 10, 2019 ICPE 2019 at Mumbai, India 18

