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Software bottlenecks can diminish the maximum 
performance of a computer system.

• Capacities of software resources can prevent full utilization 
of hardware resources.

• Examples:
• Insufficient number of pooled threads

• Contended mutual exclusion locks

• Blocking communication channels

• Also called layered bottlenecks, since a service request can 
hold software resources simultaneously from multiple layers 
of services.
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Example – Acme Air Go web application
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Where are the software bottlenecks?
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Layered queueing network can analyze software 
bottlenecks, if a performance model is given.

• Models software bottlenecks as layers of queueing networks.
• A request can use a hardware resource or a service from an 

underlying layer.

• Outputs:
• Throughput
• Utilization
• Response time
• Queue length

• But a performance problem often occurs when we do not
know the performance model!
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Our approach: estimating a layered 
performance model from execution profiles

• We build a thread dependency graph from given execution 
profiles to capture synchronization dependency among 
threads and mean thread counts.

• Top down graph traversal along the largest thread counts 
allows us to detect layered bottlenecks.

• We can build the graph with a small runtime overhead by 
extending existing profiling libraries in the Go language.
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A thread dependency graph shows thread 
counts and synchronization dependency.
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func main() {
go sender()
for i := 0; i < 10; i++ {

go receiver()
}
time.Sleep(time.Duration(5) * time.Minute)

}
func sender() {

for true {
time.Sleep(time.Duration(1) * time.Millisecond)
c <- true

}
}
func receiver() {

for true {
_ = <-c
time.Sleep(time.Duration(1) * time.Nanosecond)

}
}

10 receiver 
threads are 

created.

The receivers 
are waiting 

for the sender.

1 sender 
thread is 
created.

The sender 
is sleeping.
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We build the graph from thread profiles and 
novel wake-up profiles.
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goroutine 19 [sleep]:
time.Sleep(0xf4240)

/opt/go/src/runtime/time.go:65 +0x130
main.sender()

/main.go:15 +0x20
created by main.main

/main.go:6 +0x51
goroutine 20 [chan receive]:
main.receiver()

/main.go:22 +0x20
created by main.main

/main.go:8 +0x72

1175794700 503 @ 0x405bdc 0x405a18 0x405383 0x6e2bc6
# Waiter
#   runtime.gopark+0x12b /opt/go/src/runtime/proc.go:287
#   runtime.goparkunlock+0x5d /opt/go/src/runtime/proc.go:293
#   runtime.chanrecv+0x303 /opt/go/src/runtime/chan.go:506
#   runtime.chanrecv1+0x2a /opt/go/src/runtime/chan.go:388
#   main.receiver+0x1f /main.go:22
# created by
#   main.main+0x71 /main.go:8
# Notifier
#   runtime.send+0x8b /opt/go/src/runtime/chan.go:280
#   runtime.chansend+0x687 /opt/go/src/runtime/chan.go:179
#   runtime.chansend1+0x42 /opt/go/src/runtime/chan.go:113
#   main.sender+0x1f /main.go:16
# created by
#   main.main+0x50 /main.go:6

Thread profiles are sampled by timer to 
reflect mean thread counts.

Wake-up profiles are sampled at synchronization 
events to detect dependency among threads.
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The profiles are merged as a calling context tree, 
which is reduced into a thread dependency graph.
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Iterative steps of bottleneck detection and 
optimization
1. Compile the target application by the Go compiler with wake-up profiles 

enabled.
2. Run the target workload to periodically collect thread profiles and wake-

up profiles.
3. Annotate to the function which handles the target transaction.
4. Post-process the profiles to generate a calling context tree and a thread 

dependency graph.
5. Identify the layered bottlenecks for the target transaction.
6. Design optimizations to mitigate the bottlenecks.
7. Apply the optimizations to the application and/or the workload.
8. Repeat from Step 1.
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Top down traversal of the largest thread counts 
shows layered bottlenecks in Acme Air Go.
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We can improve the scalability of Acme Air 
Go by pooling authenticated connections.
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The profiling overhead was as small as 1% of 
the busy cycles.
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Another example – Hyperledger Fabric, a 
permissioned blockchain network
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Lock contention at an identity cache can be a 
bottleneck with Hyperledger Fabric v1.2.
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After the contention is removed, the committer 
thread becomes the next bottleneck.
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Related work

• Model-based approaches
• Requires a performance model given.

• A thread dependency graph approximates a resource dependency 
graph of the LQN labeled with measured queue lengths.

• Profile-based approaches
• Do not handle dependency among threads.

• Recently Zhou et al. also proposed trace-based bottleneck 
detection which focuses on cyclic dependencies among threads.
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Conclusions

• We proposed a novel approach for detecting layered 
bottlenecks by combining model-based and profile-based 
approaches.

• Our approach can be implemented by extending profiling 
libraries of the Go language and works with a small runtime 
overhead.

• Today’s middleware is a complex LQN and our approach is 
useful to analyze its layered bottlenecks on demand.
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