Profile-based Detection of
Layered Bottlenecks

Tatsushi Inagaki, Yohei Ueda, Takuya Nakaike, Moriyoshi Ohara
IBM Research — Tokyo



Software bottlenecks can diminish the maximum
performance of a computer system.

* Capacities of software resources can prevent full utilization
of hardware resources.

* Examples:
* Insufficient number of pooled threads
* Contended mutual exclusion locks
* Blocking communication channels

* Also called layered bottlenecks, since a service request can
hold software resources simultaneously from multiple layers
of services.



Example — Acme Air Go web application

-o-Throughput -® Driver Utilization App Utilization DB Utilization

. 2888 Throughput starts 100
& )
0 2000 saturating around - ~ 80
> 5000 6000 Tx/sec. Processors
\':5000 are not fully | g0
g utilized.
24000 40
©3000
©cz2000 & AT == - 20
= 1000 PP e b

o) - 0

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Target Throughput (Tx/sec)

April 10, 2019 ICPE 2019 at Mumbai, India

Processor Utilization (%)



Where are the software bottlenecks?

Database
Host

||||||||||||||||||| M [REpp e ———

O

)

0
FSSS——— « E—
| "
| - 2
m @ > 5
“ D.m”/p
i o
1 | S
A . 1 [Nz
! O o =
| T > »
- Q 3 O
| O P lco
RS o |25
§ O =
1 — m
!
oY nou %
i <C
m 2 gx
m =282
| L =
A

components

ICPE 2019 at Mumbai, India

April 10, 2019



Layered queueing network can analyze software
bottlenecks, if a performance model is given.

* Models software bottlenecks as layers of queueing networks.

* A request can use a hardware resource or a service from an
underlying layer.

* Outputs:
* Throughput
 Utilization
* Response time
* Queue length

* But a performance problem often occurs when we do not
know the performance model!



Our approach: estimating a layered
performance model from execution profiles

* We build a thread dependency graph from given execution
profiles to capture synchronization dependency among
threads and mean thread counts.

* Top down graph traversal along the largest thread counts
allows us to detect layered bottlenecks.

* We can build the graph with a small runtime overhead by
extending existing profiling libraries in the Go language.



A thread dependency graph shows thread
counts and synchronization dependency.

10 receiver func main() { /( Thread
hread /{ go sender() )
threads are  ------__| S/ fori:=0;i<10; i++ {/\ creation

main
receiver
10.0 created. J T —— { go receiver()
S / }

- chan9re9ceive '." time.Sleep(time.Duration(5) * time.Minute)

. ¢ . \ I

- The receivers |i }

A | are waitin i | funcsender() {

main for th dg i e:;\:\\ for true {

seiu(i)er or the sen er.J. N “x ————— time.Sleep(time.Duration(1) * time.Millisecond)
' ;N T-{ c<-true
II /7’ ‘I }
4 /7 1 . .
1 sender AR Sending and Blocking
1.0 . A \ . Vi library
threadis |- i | func receiver() { receiving a
created. J “for true { message call
sleep // \_{
1.0 A time.Sleep(time.Duration(1) * time.Nanosecond)
Thesender | __.- - }
is sleeping. }
ICPE 2019 at Mumbai, India

April 10, 2019



We build the graph from thread profiles and
novel wake-up profiles.

Thread profiles are sampled by timer to
reflect mean thread counts.

goroutine 1;% Status

/time.Sleep(0xf4240 ~
[opt/go/src/runtime/time.go:65 +0x130
main.sender()
/main.go:15 +0x20 )
y main.main M
/main.go:6 +0x51_ Call
stack

Create

L

goroutine 20 [chan receive]:

main.receiver() .
/main.go:22 +0x20| Creation

created by main.main site
/main.go:8 +0x72

Wake-up profiles are sampled at synchronization
events to detect dependency among threads.

1175794700 503 @ 0x405bdc 0x405a18 0x405383 Ox6e2bc6

/#' Waiter
#

runtime.gopark+0x12b

/opt/go/src/runtime/proc.go:287
# runtime.goparkunlock+0x5d /opt/go/src/runtime/proc.go:293
# runtime.chanrecv+0x303 /opt/go/src/runtime/chan.go:506
# runtime.chanrecvl1+0x2a /opt/go/src/runtime/chan.go:388
H
H

main.receiver+0x1f /main.go:22

created by Waiter

main.main+0x71 thread

Notifier
# runtime.send+0x8b

# runtime.chansend+0x687
# runtime.chansend1+0x42
# main.sender+0x1f

# created by

/main.go:16 —
Notifier
\# main.main+0x50 /main.go:6 thread

/main.go:8

/opt/go/src/runtime/chan.go:280
/opt/go/src/runtime/chan.go:179
/opt/go/src/runtime/chan.go:113




The profiles are merged as a calling context tree,
which is reduced into a thread dependency graph.

main f
receiver Converted to a
10.0 . .
dependency link in
Call St‘?ks / \1 a thread main
Capturedina main time receiver
P . receiver Sleep dependency graph 10.0
wake-up profile 9.9 0.1 \_ >, -
chan receive sleep 7
=~ / -chan receive
- N\ — _)l R
\ - \ : 9.9 .
main // ontime 1Y - \\ :
\ -
se{u(i)er / chanrecvl \ -7 \'- = -
: / \ ’ main |~ "
’ \ ’ sleep
_ - / sender
! I 0.1
. ‘ 1.0
time / | /
Sleep | /| runtime runtime | /’
1.0 " chansendl chanrecv I PR
sleep ) | _-
I I -7
I L-=--—"
| ] 3 |
I runtime runtime |
I chansend goparkunlock 1
1 I
1 |
| |
\ runtime runtime I
) \ send gopark 1 . _ _
April 10, 2019 \ notify wait / -PE 2019 at Mumbai, India
N /
s,

-~y



Iterative steps of bottleneck detection and

optimization

1. Corrlmorl)ilde the target application by the Go compiler with wake-up profiles
enabled.

2. Run the target workload to periodically collect thread profiles and wake-
up profiles.

3. Annotate to the function which handles the target transaction. )

4. Post-process the Erofiles to generate a calling context tree and a thread
dependency graph.

5. Identify the layered bottlenecks for the target transaction. "

6. Design optimizations to mitigate the bottlenecks. m

7. Apply the optimizations to the application and/or the workload. | steps

8. Repeat from Step 1.



Top down traversal of the largest thread counts

shows layered bottlenecks in Acme Air Go.
O

serve
428.7

IO wait, newproc " semacqu)
k 623 0.7

r

net/http
*connReader
backgroundRead
64.1

HTTP
request
handler

369.9

Allocating o
a new DB
4 A lock in mgo A connector
package at
copying

3.0

authentication
K information

N

oC newproc

April 10,




We can improve the scalability of Acme Air
Go by pooling authenticated connections.

HTTP
request

-e-Baseline -«-Optimized

Throughput (Tx/sec)

] | , handler
12000 [ | '
REST AP
10000 handler for
flight queries

8000 ‘ ;

5000 somis s

4000

2000

O ~sel 0._:[1uire semgc;]uue
0) 5000 10000 15000 20000 - T .::;;E;,};m- 1/0 wait
Target Throughput (Tx/sec) e O —

April 10, 2019 (CPE 201¢ . swwie 1o T D™ soma i



The profiling overhead was as small as 1% of
the busy cycles.

-
Accumulated
overhead was 1% of

Overhead mBaseline

% in Application Server

_ the total busy cycles. 0.0% 05% 1.0% 15% 2.0% 2.5% 3.0%

mallocgc
sweepone

heapBitsForObject

Function

RLock

ipt_do_table

April 10, 2019

ICPE 2019 at Mumbai, India

3.5%

_

4.0%

13



Another example — Hyperledger Fabric, a
permissioned blockchain network

Driver Host Peer Host Ordering Host
JMeter Fabric 3 Se& b Orderer ¢ Z00

Kafka 7| keeper | |

SDK [T, B
i Peer T ,
7. CoOmmit _ i 1| Orderer ;
- 6. N i
JSON B S— in | i Kafka ceener | |
RPC code | ! i| orderer el

___________________________________________________________________________________________________________________________________________________




Lock contention at an identity cache can be a
bottleneck with Hyperledger Fabric v1.2.

; "Sener
. .| serveStreams funcl.1
Block 435.8
_Event et se]ﬂct,ne“proc
Listener ) 04 04
. W <
protos/peer -
_Deliver DeliverFiltered Handler @ s?]le;t
s ee - 3 i -------------- -:
' select
newproc 72 @ o
common/deliver -
1nnable *Handler @
1.1 deliverBlocks.funcl
7.2
0.3
runnable
03
324 MSP
Identity
Cache
y
April 10, 2019 T

NEWPToC

ICPE 2019 at Murkbai* ThafE ™

protos/peer
_Endorser ProcessProposal Handler

3959

________________________________

A i

semacquire semacquire *eventProcessor
18.0 0.2 start
1.0

syndtr/goleveldb/leveldb
*DB
mCompaction

8.0

events/producer

Validator

Committer

‘chan recerve

\ I

. gossip/state il
o *GossipStateProviderImpl
deliverPayloads -
1.0 o
v
“chan send - chan receive
g 0.1 '_ 23 .4 0.0
. :
corefcnmm.ltler!txva].ldator :
*TxValidator select " newproc
Validate.funcl.1 0.0 L Henpro
r\ 13.1
) select :
2.1 Tl 04 -, mewproc -
core/committer/txvalidator
*TxValidator
Validate.funcl 15
0.4




After the contention is removed, the committer
thread becomes the next bottleneck.

-#-Base Commit --Opt Commit Block

1600 Event
Listener
1400 e TS s

protos/peer

1
@ ! Deliver DeliverFiltered | Handlel rugjéla;)le
i 8.0 '
1200 SRR
T select )
@ D769 ‘_; newproc

=
-
o
o

h |
common/deliver events/producer
*Handler *eventProcessor

deliverBlocks.funcl start 418.0

600 L«
semacquire :';:han receive
@ 69 10

Throughput (Tx/sec)
oo
o
o

400 L
Committer “gossip/state Busy Cycles
200 Gosstiepsuﬂt&?y‘ﬂﬂ:sﬂmpl @ for LevelDB
1.0 :
. . > Operation
0 d - chan receive L . :"semac quire"-‘ semacquire
K 0.1 » 01 L0202
0 1000 2000 3000 4000 , " @)
ter/txvalidator Pttt };r-o-t;);p-e-e-r“-““ “i
Targ et Th ro u g h p Ut (TX/ S eC) 1%3?{ 1 newproc E _Endorser ProcessProposal Handler |
9 . '
April 10, 2019 “1cpe 2819 at Mumbai, India - RN 16



Related work

* Model-based approaches
* Requires a performance model given.

* A thread dependency graph approximates a resource dependency
graph of the LQN labeled with measured queue lengths.

* Profile-based approaches

* Do not handle dependency among threads.

* Recently Zhou et al. also proposed trace-based bottleneck
detection which focuses on cyclic dependencies among threads.



Conclusions

* We proposed a novel approach for detecting layered
bottlenecks by combining model-based and profile-based
approaches.

* Our approach can be implemented by extending profiling
libraries of the Go language and works with a small runtime
overhead.

* Today’s middleware is a complex LQN and our approach is
useful to analyze its layered bottlenecks on demand.



